skip to main content


Search for: All records

Creators/Authors contains: "Freeman, Benjamin G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Do related populations that are separated by barriers predictably evolve differences from one another over time, or is such divergence idiosyncratic and unpredictable? We test these alternatives by investigating patterns of trait evolution for 54 sister pairs of Andean forest birds that live in similar environments on either side of the arid Marañón Gap, a strong dispersal barrier for humid montane species. We measured divergence in both sexual (song and plumage) and ecological (beak size and beak shape) traits. Sexual traits evolve in a clock-like fashion, with trait divergence positively correlated with genetic distance (r = 0.6–0.7). In contrast, divergence in ecological traits is uncorrelated or only loosely correlated with genetic distance (r = 0.0–0.3). Thus, for geographically isolated Andean montane forest birds that live in similar environments, divergence is predictable in sexual traits, but not for ecological traits. This means that sexual trait divergence occurs independently of adaptive ecological divergence within the mega-diverse tropical Andean avifauna. Last, we show that variation in genetic divergence across a biogeographic barrier is associated with traits that are proxies for species’ opportunities for dispersal (low elevation limit and elevational niche breadth), but not with traits that are proxies for species’ dispersal abilities (hand-wing index and foraging strata).

     
    more » « less
  2. Rapid species turnover in tropical mountains has fascinated biologists for centuries. A popular explanation for this heightened beta diversity is that climatic stability at low latitudes promotes the evolution of narrow thermal tolerance ranges, leading to local adaptation, evolutionary divergence and parapatric speciation along elevational gradients. However, an emerging consensus from research spanning phylogenetics, biogeography and behavioural ecology is that this process rarely, if ever, occurs. Instead, closely related species typically occupy a similar elevational niche, while species with divergent elevational niches tend to be more distantly related. These results suggest populations have responded to past environmental change not by adapting and diverging in place, but instead by shifting their distributions to tightly track climate over time. We argue that tropical species are likely to respond similarly to ongoing and future climate warming, an inference supported by evidence from recent range shifts. In the absence of widespread in situ adaptation to new climate regimes by tropical taxa, conservation planning should prioritize protecting large swaths of habitat to facilitate movement. 
    more » « less
  3. Abstract

    Closely related species with parapatric elevational ranges are ubiquitous in tropical mountains worldwide. The gradient speciation hypothesis proposes that these series are the result of in situ ecological speciation driven by divergent selection across elevation. Direct tests of this scenario have been hampered by the difficulty inferring the geographic arrangement of populations at the time of divergence. In cichlids, sticklebacks andTimemastick insects, support for ecological speciation driven by other selective pressures has come from demonstrating parallel speciation, where divergence proceeds independently across replicated environmental gradients. Here, we take advantage of the unique geography of the island of New Guinea to test for parallel gradient speciation in replicated populations ofSymakingfishers that show extremely subtle differentiation across elevation and between historically isolated mountain ranges. We find that currently described high‐elevation and low‐elevation species have reciprocally monophyletic gene trees and form nuclear DNA clusters, rejecting this hypothesis. However, demographic modelling suggests selection has likely maintained species boundaries in the face of gene flow following secondary contact. We compile evidence from the published literature to show that although in situ gradient speciation in labile organisms such as birds appears rare, divergent selection and post‐speciation gene flow may be an underappreciated force in the origin of elevational series and tropical beta diversity along mountain slopes.

     
    more » « less
  4. Montane species worldwide are shifting upslope in response to recent temperature increases. These upslope shifts are predicted to lead to mountaintop extinctions of species that live only near mountain summits, but empirical examples of populations that have disappeared are sparse. We show that recent warming constitutes an “escalator to extinction” for birds on a remote Peruvian mountain—high-elevation species have declined in both range size and abundance, and several previously common mountaintop residents have disappeared from the local community. Our findings support projections that warming will likely drive widespread extirpations and extinctions of high-elevation taxa in the tropical Andes. Such climate change-driven mountaintop extirpations may be more likely in the tropics, where temperature seems to exert a stronger control on species’ range limits than in the temperate zone. In contrast, we show that lowland bird species at our study site are expanding in range size as they shift their upper limits upslope and may thus benefit from climate change.

     
    more » « less